

Review of Terms		
Covariation	a relationship or association between two variables	
Pearson Product- moment coefficient	r - measure of association, indexes the extent to which a linear relationship exists between 2 variables	
Perfect Positive Bivariate Correlation	r = 1.0, all the points on a scatterplot fall on a straight line	

Review		
Statistical significance and sample size	the larger the sample the more likely the significance	
Shared variance between two variables	r ² - the extent to which two or more variables share the same variability (when one goes up or down the other goes up or down)	
	-the amount of variance in the Y variable explained by the X variable	

Review		
Sample selection & lack of variability	if a sample lacks variability for a variable, covariation that includes the variable will not be possible	
Group differentiation problem	if there is a lack of difference between a group's values (eg., all the values in the group score "5" on satisfaction) analyses between the values will show no difference	

Review

If two variables have a curvilinear

relationship, can we

include them in a

regression?

-a curvilinear relationship is a quadratic rather than linear relationship.

-squaring a variable will result in measuring the distance between the values and a curved line rather than straight line (cubing a variable works for a relationship with two curves).

variables?

-the dependent variable is plotted on the Y axis and

independent variable on X axis -a best fitting line is calculated

and drawn on the graph

-the closer the values are to the line the stronger the relationship between the two variables

Bivariate Linear Regression Equation

$$\hat{Y} = a + bX$$
The slope ("b") is determined by
identifying that line where the sum
of the distances between the line
and each case is at a minimum (that
is, the sum of the errors are
least)

Estimating the $b = \frac{sum(x - \bar{x})(y - \bar{y})}{sum(x - \bar{x})^2}$			
sum(x - x̄)(y - ȳ)	$sum(\bar{x} - x)^2$		
$\begin{array}{l} (0-2.5)(12-17) = (-2.5)(-5) = 12.5\\ (1-2.5)(14-17) = (-1.5)(-3) = 4.5\\ (2-2.5)(16-17) = (-5)(-1) = .5\\ (3-2.5)(18-17) = (.5)(1) = .5\\ (4-2.5)(20-17) = (1.5)(3) = 4.5\\ (5-2.5)(22-17) = (2.5)(5) = \underbrace{12.5}_{35.0}\\ \hline 35.0\\ \hline 17.5 = 2.0 = b \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		

The r^2 is a PRE measure reflecting the proportional reduction of error that results from using the linear regression model.

Still another way of viewing r^2 is to say that it reflects the proportion of the total variation (or change) in the dependent variable, explained by the independent variable.

occupational prestige.

Interpreting the regression equation

Y = a + bX

∲ = 6.120 + 2.762(X)

- If a respondent had zero years of schooling (if X = 0), this model predicts that his occupational prestige score (Y) would be <u>6.120</u> points.
- For each additional year of education, our model predicts a _____ point increase in occupational prestige.

Interpreting the regression equation

Y = a + bX

Ŷ = 6.120 + 2.762(X)

- If a respondent had zero years of schooling (if X = 0), this model predicts that his occupational prestige score (Y) would be <u>6.120</u> points.
- For each additional year of education, our model predicts a <u>2.762</u> point increase in occupational prestige.

