

Does this show a perfect linear relationship?
$r=0$ means that there is no association between the two variables.

Review of Terms

Non-perfect bivariate correlation	points on a scatterplot fall around a straight line
Statistical tells us how confident we can be (the probability) that an obtained correlation is different from zero Substantive tells us the importance of significance correlation found (a relatively small correlation could be very important)	

Review of Terms	
Covariation	a relationship or association between two variables
Pearson Product- moment coefficient	r-measure of association, indexes the extent to which a linear relationship exists between 2 variables
Perfect Positive Bivariate Correlation	$r=1.0$, all the points on a scatterplot fall on a straight line

Does this show a perfect linear relationship?
$r=0$ means that there is no association between the two variables.
$r=+1$ means a perfect positive correlation.

	Review
Statistical significance and sample size	the larger the sample the more likely the significance
Shared variance the extent to which two or more variables share the setween two same variability (when one goes up or down the other goes up or down)	
	-the amount of variance in the Y variable explained by the X variable

Review

-provides a visual of the degree of relationship between two variables
-can identify outliers
-can identify curvilinear relationships

Review
Value of a scatterplot -provides a visual of the degree of relationship between two variables -can identify outliers -can identify curvilinear relationships

Review

Sample selection \& lack of variability
if a sample lacks variability for a variable, covariation that includes the variable will not be possible
if there is a lack of difference between a group's values (eg., all the values in the group score " 5 " on satisfaction) analyses between the values will show no difference

How would you describe this relationship between occupational prestige and education?

How would you describe this relationship?

Figure 42.11 Stylized Curvilinear Relationship

	Review -the dependent variable is plotted on the Y axis and independent variable on X axis
How does the regression process allow us to examine the strength of -a best fitting line is calculated relationship and drawn on the graph bariables? two -the closer the values are to the line the stronger the relationship between the two variables 	

The Seniority-Salary Relationship

Figure 8.5 A Perfect Linear Relationship Between Seniority (in years) and Annual Salary (in $\$ 1,000$) of Six Teachers (hypothetical)

How do we determine the best fitting line?

The best fitting line can be drawn on a set of axes once the Y intercept and the slope are computed.

Equation for a Straight Line

Bivariate Linear Regression Equation

$$
\hat{y}=a+b x
$$

- "Y-intercept" (or "a")-The point where the regression line crosses the y-axis, or the value of Y when $X=0$.
- "Slope" (or "b")-The change in variable Y (the dependent variable) with one unit change in X (the independent variable.)

Bivariate Linear Regression Equation

$$
\hat{y}=a+b x
$$

The slope (" $b^{\prime \prime}$) is determined by identifying that line where the sum of the distances between the line and each case is at a minimum (that is, the sum of the errors are least)

The Least Squares (best fitting) Line!

Figure 8.6 The Best-Fitting Line for GNP per Capita and Percentage The Best-Fitting Line for GNP per Capita and Perc
Willing to Pay More to Protect the Environment

Estimating the slope: b

- The bivariate regression coefficient or the slope of the regression line can be obtained from the observed X and Y scores. That is, the co-variance divided by the variance or:

$$
b=\frac{S_{Y X}}{S_{X}^{2}}=\frac{\frac{\sum(X-\bar{X})(Y-\bar{Y})}{N-1}}{\frac{\sum(X-\bar{X})^{2}}{N-1}}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum(X-\bar{X})^{2}}
$$

Calculating the Regression Line: Using the Least Squares Method

- Least-squares line (also referred to as the regression line and the best fittingtine) - A line where the errors are at a minimum.
- Least-squares method - The technique that produces the least squares line. The method is based on identifying the line where there is the least amount of error between the line and each case.

We can use the data from the Seniority and Salary graph to estimate a "best fitting" line

Table 8.3 Seniority and Salary of Six Teachers (hypothetical data)

| (hypothetical data)
 Seniority (lin yeors)
 x r
 0 12,000
 1 14,000
 2 10,000
 3 18,000
 4 20,00
 5 22,000 |
| :--- | :--- |

$$
\begin{aligned}
& \text { Estimating the } b=\frac{\operatorname{sum}(x-\bar{x})(y-\bar{y})}{\operatorname{sum}(x-\bar{x})^{2}} \\
& (0-2.5)(12-17)=(-2.5)(-5)=12.5 \quad(0-2.5)^{2}=6.25 \\
& (1-2.5)(14-17)=(-1.5)(-3)=4.5 \quad(1-2.5)^{2}=2.25 \\
& (2-2.5)(16-17)=(-.5)(-1)=.5(2-2.5)^{2}=.25 \\
& (3-2.5)(18-17)=(.5)(1)=.5(3-2.5)^{2}=.25 \\
& (4-2.5)(20-17)=(1.5)(3)=4.5 \quad(4-2.5)^{2}=2.25 \\
& (5-2.5)(22-17)=(2.5)(5)=\frac{12.5}{35.0} \quad(5-2.5)^{2}=\frac{6.25}{17.50} \\
& \frac{35.0}{17.5}=2.0=b
\end{aligned}
$$

The Seniority-Salary Relationship

Figure 8.5 A Perfect Linear Relationship Between Seniority (in years) and Annual Salary (in $\$ 1,000$) of Six Teachers (hypothetical)

Interpreting

Pearson's Correlation Coefficient (r)

- It is a measure of association between two interval-ratio variables. The square root of r^{2}.
- Symmetrical measure-No specification of independent or dependent variables.
- Ranges from -1.0 to +1.0 . The sign (\pm) indicates direction. The closer the number is to ± 1.0 the stronger the association between X and Y.

Estimating the Y axis: a
The point at which the regression line crosses the Yaxis is determined by:

$$
\begin{gathered}
a=\bar{y}-b \bar{X} \\
\quad \text { or }
\end{gathered}
$$

$a=17-(2)(2.5)=12$

Summary:
 Properties of the Regression Line

- Represents the predicted values for Y for any and all values of X.
- It is the best fitting line in that it minimizes the error (sum of the squared errors or deviations).
- Has a slope that can be positive or negative; null hypothesis is that the slope is zero.
- Provides us with two statistics: the coefficient of determination (r^{2}) and the correlation coefficient (r).

Interpreting the Coefficient of Determination

The r^{2} is a PRE measure reflecting the proportional reduction of error that results from using the linear regression model.

Still another way of viewing r^{2} is to say that it reflects the proportion of the total variation (or change) in the dependent variable, explained by the independent variable.

Interpreting the regression equation

$$
\begin{gathered}
y=a+b X \\
y=6.120+2.762(X)
\end{gathered}
$$

- If a respondent had zero years of schooling (if $X=0$), this model predicts that his occupational prestige score (Y) would be
\qquad points.
- For each additional year of education, our model predicts a \qquad point increase in occupational prestige.

Interpreting the regression equation

$$
\begin{gathered}
y=a+b x \\
y=6.120+2.762(x)
\end{gathered}
$$

- If a respondent had zero years of schooling (if $X=0$), this model predicts that his occupational prestige score (Y) would be 6.120 points.
- For each additional year of education, our model predicts a 2.762 point increase in occupational prestige.

The Regression Equation

This line represents the predicted values for Y for any and all values of X

Interpreting the regression equation

$$
\begin{gathered}
y=a+b X \\
y=6.120+2.762(X)
\end{gathered}
$$

- If a respondent had zero years of schooling (if $X=0$), this model predicts that his occupational prestige score (Y) would be 6.120 points.
- For each additional year of education, our model predicts a \qquad point increase in occupational prestige.

